Neural Polysynthetic Language Modelling

7
 thousand
 Languages
 spoken
 worldwide

370
million

Indigenous
people
in the world
countries

With
indigenous
communities

5

thousand

Different
indigenous
cultures

2680
Ianguages

In danger

- Increasing understanding, reconciliation and international cooperation.
- Creation of favorable conditions for knowledge-sharing \& dissemination of good practices with regards to indigenous languages.
- Integration of indigenous languages into standard setting.
- Empowerment through capacity building.
- Growth and development through elaboration of new knowledge.
- Increasing understanding, reconciliation and international cooperation.
- Creation of favorable conditions for knowledge-sharing \& dissemination of good practices with regards to indigenous languages.
- Integration of indigenous languages into standard setting.
- Empowerment through capacity building.
- Growth and development through elaboration of new knowledge.

Inuit-Yupik-Unangam Tunuu language family

- Greenland (Inuit)
- Northern Canada (Inuit)
- Northern Alaska (Inuit)
- Western Alaska (Yup’ik)
- Southwestern Alaska (Sugpiak, Unangam Tunuu)
- St. Lawrence Island (Yupik)
- Big Diomede (Inuit)
- Far eastern Russia (Yupik, Sirenik)

Inuit-Yupik-Unangam Tunuu language family

Since 1933, NLP technology has overwhelmingly focused on languages \& methodologies in which the word is the primary meaning-bearing unit

For most human languages, this assumption is fundamentally broken

$p\left(\tau_{t} \mid \tau_{1} \ldots \tau_{t-1}\right)$

$$
\frac{\operatorname{count}\left(\tau_{1} \ldots \tau_{t}\right)}{\operatorname{count}\left(\tau_{1} \ldots \tau_{t-1}\right)}
$$

English

* actual data disparity is much much larger

dog

dogs

qikmiq

qikmik

qikmit

qikmigka

qikmigken

qikminka

qikmiqa
 qikmighpung
 qikmighput

There are 1.2×10^{23}

stars in the observable universe.

There are 1.2×10^{23} possible Yupik word forms.

Big data is NOT the solution.

Modelling only at the word-level is like modelling only at a galaxy-level.

Epealing ana transcription.

Qeove, when uesc as me parmaqesta ar common
motex langunge of ail the Qendi, was wivany witten called the parmaquestanis. F Enis is desesented in me boak cencomning the onphabers. Here crily the most wsual form, that wist in thas beack, is given.

Che leztors used ware 3 g in number, recited in the
followings order. Their names If are given in transexptien
 Leter of ma name: mus n ve verv]; oreept chere the letion exprrita a camsumantit combinatiou which cornith a folteved b) the value, as amps $=[\mathrm{mp}]$. Ontw value of $y^{\prime} \mathrm{ar}^{\prime}$, iu routs

Alphatect. A Parmatéma, p-serico: ${ }^{p} \underset{p d}{p}=\frac{b}{f \alpha}$

vd md ampa amba apsa

arda i\& alda assa also Z ins on c.ice

parma eloaldamberon xxi
Che Feanorian λ (phabet• pare 1
Quenya Verb Serructure
by J.R.R.COLKlen

Course goals

- Learn about a new language from a reference grammar
- Demonstrate your understanding through writing and teaching
- Select a topic from computational linguistics applicable to this language
- Conduct a literature review, resulting in an annotated bibliography \& report on state of the art
- Perform research on this topic
- Identify state-of-the-art baseline, implement \& extend it, run experiments, write a paper
- Conduct extended research in a group
- Collaborate, experiment, and jointly author a paper
- Act as a peer reviewer for your classmates' work

Demographics

- 1300 Yupiget on St. Lawrence Island
- 800 Yupiget on Russian mainland
- 300-400 Yupiget on Alaskan mainland

Education

- 1930s-1950s Yupik materials developed in Russia
- 1970s-1990s Yupik materials developed in Alaska

Language shift - Russia

- By mid-20th century, shift away from Yupik in Russia
- Current estimate of <200 L1 Yupik speakers in Russia
- Youngest L1 Russian Yupiget estimated age >70

Language shift - St. Lawrence Island

- In 1980, nearly all St. Lawrence Island Yupiget children spoke Yupik at home
- By mid-1990s through early 2000s, shift away from Yupik among SLI youth
- All SLI Yupiget born 1980 or earlier assumed to be L1 Yupik
- Current estimate of at least 540 L1 Yupik speakers on SLI
- Youngest L1 SLI Yupiget not known

Phonology \& Orthography

Close	\mathbf{i}		\mathbf{u}	Latin
Vowels	i		\mathbf{u}	IPA
	\mathbf{u}		\mathbf{y}	Cyrillic
Mid		\mathbf{e}		Latin
Vowel			∂	IPA
		\mathbf{u}	Cyrillic	
Open	a		Latin	
Vowel	\mathbf{a}		IPA	
		\mathbf{a}		Cyrillic

Syllable structure

- Word-initial V(C)
- Otherwise CV(C)
- V may be short (e, a, i, u) or long (aa, ii, uu)
- Adjacent consonants only at syllable boundaries
- Adjacent consonant generally must agree in voicing

Phonology \& Orthography

	Labial	Alveolar	Palata	Retroflex	Velar	Velar (rounded)	Uvular	Uvular (rounded)	Glott	
Unvoiced Stops	p	t			k	kw	q	qw		Latin IPA Cyrillic
	p	t			k	k^{w}	q	$\mathrm{q}^{\text {w }}$		
	II	T			к	кӱ	K	кў		
Voiced Continuants	v	z	y	r	g	w	gh	ghw		Latin IPA Cyrillic
	v	1 z	j	Ł	Y	$\gamma^{\text {w }}$	к	$5^{\text {w }}$		
	в	л 3	и	p	r	(r) ${ }^{\text {y }}$	r	rӱ		
Unvoiced Continuants	f	II	s	rr	gg	wh	ghh	ghhw	h	Latin IPA Cyrillic
	f	4	s	s	x	$\mathrm{x}^{\text {w }}$	χ	$\chi^{\text {w }}$	h	
	ф	ль	c	II	\mathbf{x}	x ${ }^{\text {y }}$	x	xy	г	
Voiced Nasals	m	n			ng	ngw				Latin IPA Cyrillic
	m	n			1	$\mathrm{y}^{\text {w }}$				
	м	H			H	нў				
Unvoiced Nasals	mm	nn			ngng	ngngw				Latin IPA Cyrillic
	m	n			ท̊	ทัw				
	мь	нь			нь	ньў				

Legacy Digitization

- 3-volume Lore of St. Lawrence Island
- 3-volume Elementary Yupik readers
- 1-volume of Russian Yupik stories

Intersecting machine learning \& linguistic fieldwork

- Yupik is polysynthetic, allowing for morphologically-complex words
(1) mangteghaghllangllaghyugtukut
mangteghagh- -ghllag- -ngllagh- -yug- -tu- $\quad-k u t$ house- -big- -build- -want.to- -INTR.IND- -1PL 'We want to build a big house'
- Yupik words typically adhere to the following template:

Root + 0-7 Derivational Morpheme(s) + Inflectional Morphemes + (Enclitic)

- Yupik is polysynthetic, allowing for morphologically-complex words
(1) mangteghaghllangllaghyugtukut

mangteghagh-	-ghllag-	-ngllagh-	-yug-	-tu-	-kut
house-	-big-	-build-	-want.to-	-INTR.IND-	-1 PL

'We want to build a big house'

- Yupik words typically adhere to the following template:

Root + 0-7 Derivational Morpheme(s) + Inflectional Morphemes + (Enclitic)

- Yupik is polysynthetic, allowing for morphologically-complex words
(1) mangteghaghllangllaghyugtukut $\begin{array}{llllll}\text { mangteghagh- } & \text {-ghllag- } & \text {-ngllagh- } & \text {-yug- } & \text {-tu- } & \text {-kut } \\ \text { house- } & \text {-big- } & \text {-build- } & \text {-want.to- } & \text {-INTR.IND- } & -1 \mathrm{PL}\end{array}$ 'We want to build a big house'
- Yupik words typically adhere to the following template:

Root + 0-7 Derivational Morpheme(s) + Inflectional Morphemes + (Enclitic)

- Yupik is polysynthetic, allowing for morphologically-complex words
(1) mangteghaghllangllaghyugtukut
mangteghagh- -ghllag- -ngllagh- -yug- -tu- \quad-kut house- -big- -build- -want.to- -INTR.IND- -1PL 'We want to build a big house'
- Yupik words typically adhere to the following template:

Root + 0-7 Derivational Morpheme(s) + Inflectional Morphemes + (Enclitic)

- Morphological analyzers may be implemented as a

Finite-State Transducer

Neural Network

- Neural systems require LOTS of data
- But Yupik is a low-resource language
- Very few surface form-lexical form pairs available
- OBJECTIVE: Analyze inflected Yupik nouns with no derivational morphology
- TRAINING DATA: Every nominal surface form and its respective lexical form
- 3873 Yupik noun roots
- 273 inflectional suffixes
- $3873 \times 273=1,057,329$ total nouns
- 658,410 after removing duplicate surface forms (case syncretism)

Surface Form	Lexical Form
mangteghaq	mangteghagh[N][ABS][SG]
mangteghaat	mangteghagh[N][ABS][PL]
mangteghaak	mangteghagh[N][ABS][DU]
mangteghaa	mangteghagh[N][ABS][SG][3SGPOSS]

- EVALUATION OBJECTIVES
- Evaluate on a neutral dataset
- Contrast performance with the FST analyzer
- neUtral dataset: Mrs. Della Waghiyi's St. Lawrence Island Yupik Texts With Grammatical Analysis (Waghiyi \& Nagai, 2001)
- Identified 344 inflected nouns with no derivational morphology
- Supplemented the FST analyzer with a guesser module
- Results:

	Coverage (\%)	Accuracy (\%)
FST (No Guesser)	85.96	79.82
FST (w/Guesser)	100	84.50
Neural	100	91.81

Background	St. Lawrence Island Yupik
000000	000000000000000000

- An out-of-vocabulary (OOV) root is an unattested root that appears in the Waghiyi \& Nagai (2001) evaluation dataset but does not appear in our data

OOV Root	FST	NN
aghnasinghagh	-	-
aghveghniigh	-	\checkmark
akughvigagh	\checkmark	\checkmark
qikmiraagh	-	-
sakara	\checkmark	-
sanaghte	-	-
tangiqagh	-	\checkmark

- A root with a spelling variant is one that differs in the Waghiyi \& Nagai (2001) evaluation set from its form in our data

Root Variant	FST	NN
melqighagh	\checkmark	\checkmark
piitesiighagh	-	\checkmark
uqfiilleghagh	-	\checkmark
*ukusumun	-	\checkmark

Building a virtuous cycle

- Digitization of legacy materials
- Pedagogical materials \& tools
- Orthographic experimentation
- Identify under-described phenomena
- Real-time morphological analysis
- Digitization of legacy materials
- Pedagogical materials \& tools
- Orthographic experimentation
- Identify under-described phenomena
- Real-time mornhological analysis
- Digitization of legacy materials
- Pedagogical materials \& tools
- Orthographic experimentation
- Identify under-described phenomena
- Real-time morphological analysis
- Digitization of legacy materials
- Pedagogical materials \& tools
- Orthographic experimentation
- Identify under-described phenomena
- Real-time morphological analysis
- Digitization of legacy materials
- Pedagogical materials \& tools
- Orthographic experimentation
- Identify under-described phenomena
- Real-time morphological analysis

Moving forward

Moving forward -00000

$$
p(\boldsymbol{e})=p\left(e_{t} \mid e_{1} \ldots e_{t-1}\right)
$$

Moving forward $0 \bullet 0000$

$$
\begin{aligned}
p(\boldsymbol{e}) & =p\left(e_{t} \mid e_{1} \ldots e_{t-1}\right) \\
& \approx p\left(e_{t} \mid e_{t-1}\right)
\end{aligned}
$$

Moving forward 0000000000000000000000000
Intersecting machine learning \& linguistic fieldwork

1. Zero-order approximation XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD

2. First-order approximation OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH BRL
3. Second-order approximation

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE
5. First-Order Word Approximation REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE THESE.
6. Second-Order Word Approximation

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED

$$
\begin{aligned}
p(\boldsymbol{e}) & =p\left(e_{t} \mid e_{1} \ldots e_{t-1}\right) \\
& \approx p\left(e_{t} \mid e_{t-1}\right)
\end{aligned}
$$

Moving forward $000 \bullet 00$

$$
p(\boldsymbol{e})=p\left(e_{t} \mid e_{1} \ldots e_{t-1}\right)
$$

Moving forward 000000

Moving forward 0000 ○

- Legacy text digitization
- Web portal / interactive e-books
- App-based dictionary
- Language learning lessons
- foma-based spell-checker
- Forced aligner / speech recognizer
- Machine translation

Feature-rich Open-vocabulary Interpretable Language Modelling

Interpretable Tensor Morpheme Representation

үaławtəma

"with the head"

Interpretable Tensor Morpheme Representation

yaławtəma

"with the head"

Interpretable Tensor Morpheme Representation

Interpretable Tensor Morpheme Representation

Interpretable Tensor Morpheme Representation

"with the head"

Interpretable Tensor Morpheme Representation

"with the head"

Symbolic structure \rightarrow Tensor representation \rightarrow Vector representation

Interpretable Tensor Morpheme Representation

Decompose into fillers and roles.
(Smolenksy 1990)

Interpretable Tensor Morpheme Representation

Embed the fillers and roles into vectors
(Smolenksy 1990)

Interpretable Tensor Morpheme Representation

Embed the fillers and roles into vectors
(Smolenksy 1990)

$$
\operatorname{Repr}(\mathbf{\lambda}-\mathbf{m a})=\left(\hat{\mathbf{\gamma}} \bigotimes \hat{r}_{1}+\hat{\boldsymbol{a}} \bigotimes \hat{r}_{2}+\hat{\mathbf{m}} \bigotimes \hat{r}_{8}+\hat{\boldsymbol{a}} \bigotimes \hat{r}_{9}\right) \bigotimes \hat{r}_{m_{1}}
$$

Tensor Morpheme Representation

Embed the fillers and roles into vectors
(Smolenksy 1990)

$$
\operatorname{Repr}(\mathrm{ya}-\mathrm{ma})=\left(\hat{\mathrm{\gamma}} \otimes \hat{r}_{1}+\hat{\mathrm{a}} \otimes \hat{r}_{2}+\hat{\mathrm{m}} \otimes \hat{r}_{8}+\hat{\mathrm{a}} \otimes \hat{r}_{9}\right) \otimes \hat{r}_{m_{1}}
$$

Interpretable Tensor Morpheme Representation

1. Deterministically create these with FST for known sequences
2. Learn them with neural model (e.g. RNN seq2seq) to generalize

Embed the fillers and roles into vectors
(Smolenksy 1990)

Deterministically construct morpheme tensors

a. Run morphological analyzer on training data to identify morphemes
qikmighhaak \xrightarrow{a} qikmigh - ghhagh - [Abs.Du]
"Two small dogs"

Deterministically construct morpheme tensors

a. Run morphological analyzer on training data to identify morphemes
b. Use Tensor Product Representation to deterministically calculate morpheme tensors
qikmighhaak \xrightarrow{a} qikmigh - ghhagh - [Abs.Du]
"Two small dogs"
"dog - small.N - [Abs.Du]"
b

Deterministically construct morpheme tensors

a. Run morphological analyzer on training data to identify morphemes
b. Use Tensor Product Representation to deterministically calculate morpheme tensors
c. Save these morpheme tensors for later use as gold standard labels
 morpheme tensors

Autoencoder

High dimensionality:
$10^{3}-10^{9}$ floats per vector

High dimensionality: $10^{3}-10^{9}$ floats per vector

Low dimensionality: 64 floats per vector

(St. Lawrence Island Yupik)

Use autoencoder to learn morpheme vectors

High dimensionality: $10^{3}-10^{9}$ floats per vector

> Low dimensionality:
> 64 floats per vector

Dictionary of constructed morpheme tensors

Problem: Morpheme tensors are sparse

As a result, learning signal is very weak.

Solution: Unbinding Loss

qikmigh	ghhagh	[Abs.Du]

Use loss function based on reconstructed strings.

